Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
International Journal of Applied Pharmaceutics ; 15(Special Issue 1):51-55, 2023.
Article in English | EMBASE | ID: covidwho-20240315

ABSTRACT

Objective: To design an optimal formulation for quercetin and vitamin C nano-phytosome. Method(s): Nano-phytosomes are prepared by the thin layer hydration technique using a 2-level-5-factor design experimental. A total of 32 experimental formulas were used for data analysis. The ratio of quercetin: soy lecithin (X1), the ratio of quercetin: cholesterol (X2), stirring speed (X3), stirring temperature (X4), and stirring time (X5) were used as independent factors, while globule size as a dependent factor. Data analysis was carried out by Design Expert12 application. Characterization of the optimal formula included physicochemical evaluation, globule size analysis, zeta potential, polydispersity index, entrapment efficiency, Transition Electron Microscopy (TEM) analysis, and FTIR analysis. Result(s): The optimal formula consisted of quercetin: vitamin C: lecithin: cholesterol ratio of 1: 1: 1.046: 0.105 mol;stirring speed 763.986 rpm;stirring time of 59 min, at temperature 51.73 degreeC which produced 59.26 nm average globule size, PDI value 0.66;zeta potential value-35.93+/-0.95 mV and average SPAN value 0.61. This formulation showed entrapment efficiency of quercetin 91.69+/-0.18 % and vitamin C 90.82+/-0.13 %. The TEM and FITR analysis showed the morphological of the globules and interactions between the drugs, soy lecithin, and cholesterol to form nano-phytosomes. Conclusion(s): The conditions to obtain the optimal formula for quercetin vitamin C nano-phytosome consisted of quercetin: vitamin C: lecithin: cholesterol ratio of 1: 1: 1.046: 0.105 mol;stirring speed 763.986 rpm;stirring time of 59 min, and at temperature 51.73 degreeC.Copyright © 2023 The Authors.

2.
Biosens Bioelectron ; 219: 114799, 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2242712

ABSTRACT

As a result of the 2019 coronavirus pandemic, disinfection byproducts generated by the extensive use of chlorine disinfectants have infiltrated the aquatic environment, severely threatening ecological safety and human health. Therefore, the accurate monitoring of the biotoxicity of aqueous environments has become an important issue. Biocathode sensors are excellent choices for toxicity monitoring because of their special electroautotrophic respiration functions. Herein, a novel electroautotrophic biosensor with rapid, sensitive, and stable response and quantifiable output was developed. Its toxicity response was tested with typical disinfection byproducts dichloromethane, trichloromethane, and combinations of both, and corresponding characterization models were developed. Repeated toxicity tests demonstrated that the sensor was reusable rather being than a disposable consumable, which is a prerequisite for its long-term and stable operation. Microbial viability confirmed a decrease in sensor sensitivity due to microbial stress feedback to the toxicants, which is expected to be calibrated in the future by the standardization of the biofilms. Community structure analysis indicated that Moheibacter and Nitrospiraceae played an important role in the toxic response to chlorine disinfection byproducts. Our research provides technical support for protecting the environment and safeguarding water safety for human consumption and contributes new concepts for the development of novel electrochemical sensors.

3.
Journal of the Canadian Association of Gastroenterology ; 4, 2021.
Article in English | EMBASE | ID: covidwho-2032039

ABSTRACT

Background: The COVID-2019 pandemic continues to restrict access to endoscopy, resulting in delays or cancellation of non-urgent endoscopic procedures. A delay in the removal or exchange of plastic biliary stents may lead to stent occlusion with consensus recommendation of stent removal or exchange at three-month intervals [1-4]. We postulated that delayed plastic biliary stent removal (DPBSR) would increase complication rates. Aims: We aim to report our single-centre experience with complications arising from DPBSR. Methods: This was a retrospective, single-center, observational cohort study. All subjects who had ERCP-guided plastic biliary stent placement in Halifax, Nova Scotia between Dec 2019 and June 2020 were included in the study. DPBSR was defined as stent removal >=90 days from insertion. Four endpoints were assigned to patients: 1. Stent removed endoscopically, 2. Died with stent in-situ (measured from stent placement to documented date of death/last clinical encounter before death), 3. Pending removal (subjects clinically well, no liver enzyme elevation, not expired, endpoint 1 Nov 2020), and 4. Complication requiring urgent reintervention. Kaplan-Meier survival analysis was used to represent duration of stent patency (Fig.1). Results: 102 (47.2%) had plastic biliary stents placed between 2/12/2019 and 29/6/2020. 49 (48%) were female, and the median age was 68 (R 16-91). Median follow-up was 167.5 days, 60 (58.8%) subjects had stent removal, 12 (11.8%) died before replacement, 21 (20.6%) were awaiting stent removal with no complications (median 230d, R 30-332), 9 (8.8%) had complications requiring urgent ERCP. Based on death reports, no deaths were related to stent-related complications. 72(70.6%) of patients had stents in-situ for >= 90 days. In this population, median time to removal was 211.5d (R 91-441d). 3 (4.2%) subjects had stent-related complications requiring urgent ERCP, mean time to complication was 218.3d (R 94-441). Stent removal >=90 days was not associated with complications such as occlusion, cholangitis, and migration (p=1.0). Days of stent in-situ was not associated with occlusion, cholangitis, and migration (p=0.57). Sex (p=0.275), cholecystectomy (p=1.0), cholangiocarcinoma (p=1.0), cholangitis (p=0.68) or pancreatitis (p=1.0) six weeks prior to ERCP, benign vs. malignant etiology (p=1.0) were not significantly associated with stent-related complications. Conclusions: Plastic biliary stent longevity may have been previously underestimated. The findings of this study agree with CAG framework recommendations [5] that stent removal be prioritized as elective (P3). Limitations include small sample size that could affect Kaplan-Meier survival analysis. Despite prolonged indwelling stent time as a result of COVID-19, we did not observe an increased incidence of stent occlusion or other complications.

SELECTION OF CITATIONS
SEARCH DETAIL